MTS100

Wheel Speed Sensor with Excellent Jitter

1 Product Description

The MTS100 is produced with SIP (System in Package) technology, which integrates AMR sensor, ASIC and capacitor in one IC body.

The MTS100 is a wheel speed sensor with direction indication designed for sophisticated vehicle control systems. The best-in-class jitter performance makes it the best choice for wheel speed applications.

The MTS100 based on AMR technology, excellent sensitivity & stability for wheel speed applications, can meet harsh automotive requirements.

The MTS100 supports standard protocol & PWM protocol & AK protocol.

The MTS100 is developed based on ISO 26262.

2 Features

- Developed Based on ISO 26262
- AMR Based
- SIP (System in Package) Technology
- Wide Operating Temperature -40°C to 150°C
- Excellent Jitter Performance
- High Sensitivity Enables Outstanding Airgap
- Support Standard & PWM & AK protocol
- RoHS Compliant: (EU)2015/863

3 Product Overview of MTS100

Part No.	Description
MTS100A-STD	IMA-2L, tape & reel (3000pcs/bag)
MTS100A-PWM	IMA-2L, tape & reel (3000pcs/bag)
MTS100A-AK	IMA-2L, tape & reel (3000pcs/bag)

4 Applications

- Wheel Speed Sensor
- ABS Sensor

5. Pin Configuration and Functions

No.NameDescription1VccSupply voltage2GNDGround

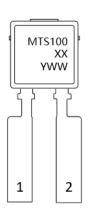


Figure.1

Pin Configuration & Functions

Table of Contents

1	Product Description	1
2	Features	1
3	Product Overview of MTS100	1
4	Applications	1
5	Pin Configuration and Functions	1
6	Functional Block Diagram	3
7	Electrical and Magnetic Characteristics	3
	7.1 Absolute Maximum Ratings	3
	7.2 ESD Ratings	
	7.3 Electrical Specifications	4
	7.4 Magnetic Characteristics	5
	7.5 Switch Behavior	5
	7.6 Typical Output Waveform (Standard Protocol)	6
	7.7 Typical Output Waveform (PWM Protocol)	6
	7.8 Typical Output Waveform (AK Protocol)	7
	7.9 Undervoltage Behavior	9
8	Application Circuit	9
	8.1 Typical Application Circuit	9
	8.2 EMC Test Circuit	9
9	Package Material Information	10
10	Copy Rights and Disclaimer	11

History

1.0 Version Original Version

6 Functional Block Diagram

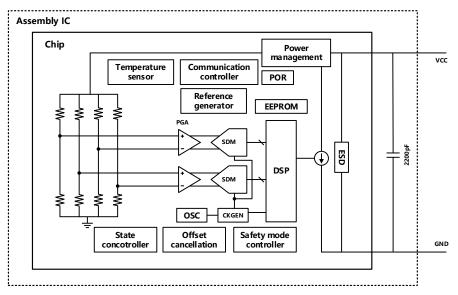


Figure.2

Functional Block Diagram

7 Electrical and Magnetic Characteristics

7.1 Absolute Maximum Ratings

Absolute maximum ratings are limited values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability All voltages listed are referenced to GND.

Symbol	Parameters		Min	Max	Unit
Vcc	Supply Voltage		-0.3	22	V
l _R	Reverse Current		-200	-	mA
ТА	Operating Ambient Temperature		-40	150	℃
		12500h	-40	110	℃
		or 10000h	-40	125	℃
TJ	TJ Junction Temperature (1)	or 5000h	-40	150	℃
		or 2500h	-40	160	℃
		or 500h	-40	170	°C
Ts	Storage Temperature		-40	150	℃

⁽¹⁾ The life time statement is based on the MagnTek qualification results. The actual life time of each component depends on its application. The life time statement shall in no event extend the agreed warranty period

7.2 ESD Ratings

Symbol		Reference	Values	Unit
Vice	Human-body model (HBM)	AEC-Q100-002	20000	V
Vesd	Charged-device model (CDM)	AEC-Q100-011	1000	V

7.3 Electrical Specifications

At $T_A=-40\sim150$ °C, $Vcc=5.4V\sim18V$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Тур	Max	Unit
Vcc	Supply Voltage	Standard & PWM & AK Protocol Referred to GND; Directly on IC leads; Not include the voltage drop at R _L	5.4	-	18	V
lError	Error Supply Current		3.5	3.8	4.2	mA
RL	Load Resistance	AK Protocol	15	-	50	Ω
IXL	Load Nesistance	Standard & PWM Protocol	15	-	75	Ω
ICCL	Low Level Supply Current		6.8	7.2	7.8	mA
Іссм	MID Level Supply Current	AK Protocol	12.6	14.2	15.6	mA
leeu	High Level Supply	AK Protocol	23.2	26.8	30.4	mA
Іссн	Current	Standard & PWM Protocol	12.6	14.2	15.6	mA
lecu/lecu	High Level vs. Low	AK Protocol	3.3	3.7	4.1	-
Icch/Iccl Level Level		Standard & PWM Protocol	1.8	1.95	2.1	-
ICCM/ICCL	MID Level vs. Low Level	AK Protocol	1.8	1.95	2.1	-
lStart	Start up Current		-	7.2	-	mA
Tr	Rise Time	Output Slew Rate; ICCL to ICCH (10% to 90%)	8	-	27	mA/us
Tf	Fall Time	Output Slew Rate; ICCH to ICCL (90% to 10%)	8	-	27	mA/us
Vac	Supply Voltage Modulation	10Hz < FMOD <150kHz	-	-	6	Vpp
fMag	Magnetic Signal Frequency		0	-	3	KHz
D.C.	Duty Cycle		40	-	60	%
Тро	Power on Time		-	-	1	mS
VReset	Reset Voltage	Directly on IC Leads	-	-	4.0	V
VRel	Release Voltage	Directly on IC Leads	-	-	5.4	V
VHys	Hysteresis Voltage	Directly on IC Leads	-	1.4	-	V
SJitter	Period Jitter	1 Sigma Magnetic Signal @30Gs	-	0.1	-	%
NSpd	Number of Speed Pulses	After TPO to 1st Speed Pulse	-	-	4	1

7.4 Magnetic Characteristics

The typical values based on Vcc=12V & TA =25°C

Symbol	Parameters		Тур	Max	Unit
dBLimit	Minimum Differential Magnetic Input Signal	-	2	-	Gs
dBWarning	Warning Differential Magnetic Input Signal	-	5	-	Gs
dBeL	EL Differential Magnetic Input Signal	-	10	-	Gs

7.5 Switching Behavior

The output switching occurs at the zero crossing during the rising edge of the differential magnetic signal, the speed pulse will follow the signal of channel A, after compared with the signal of channel B, the direction can be detected

The output has been designed as a two wire current interface based on a standard & PWM & AK principle. Each zero crossing during the rising edge of the magnetic input signal triggers an output pulse indicated by high level & low level current consumption

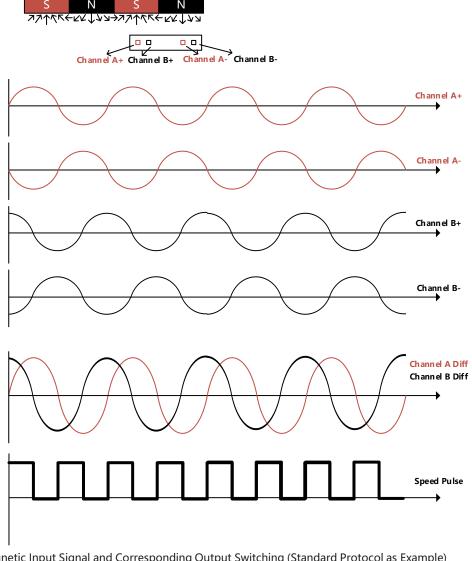
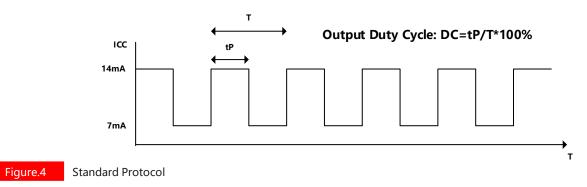
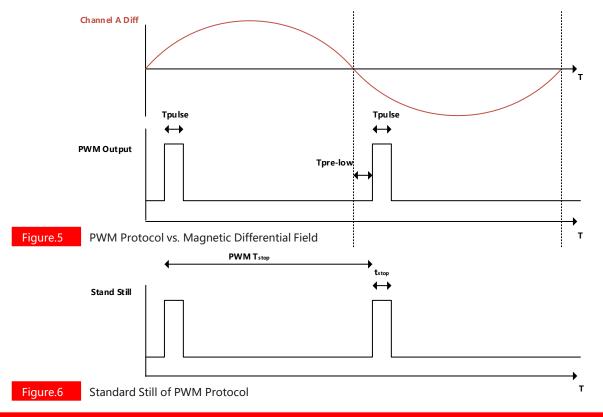



Figure.3

Magnetic Input Signal and Corresponding Output Switching (Standard Protocol as Example)


7.6 Typical Output Waveform (Standard Protocol)

7.7 Typical Output Waveform (PWM Protocol)

The PWM protocol provides the information about rotational direction and air gap The typical values based on Vcc=12V & $T_A = 25^{\circ}C$

Symbol	Parameters	Condition	Min	Тур	Max	Unit
Tpre-low	Length of Pre-low Pulse		38	45	52	us
TWarning	Length of Warning Pulse	dB <dbwarning< td=""><td>38</td><td>45</td><td>52</td><td>us</td></dbwarning<>	38	45	52	us
Tdr-L	Length of DR-L Pulse		76	90	104	us
Tdr-r	Length of DR-R Pulse		153	180	207	us
TDR-L&EL	Length of DR-L & EL Pulse		306	360	414	us
TDR-R&EL	Length of DR-R & EL Pulse		616	720	828	us
felmax	Output of EL Pulse, maximum frequency		-	117	-	Hz
t Stop	Length of Stand Still Pulse		1.23	1.44	1.65	ms
PWM TStop	Period of Stand Still		590	737	848	ms

7.7 Typical Output Waveform (PWM Protocol) (Continued)

EL pulse range:

If the magnetic differential field exceeds dBel, the output pulse lengths are 90us or 180us respectively, depending on the direction of rotation. When the magnitude of the magnetic differential field is below dBel and above dBwarning, the output pulse lengths are 360us or 720us respectively, depending on the direction of rotation. The device works with full functionality.

Warning pulse range:

Warning pulse information is issued in the output pulse length when the magnetic field is below than dBwarning and above dBLimit.

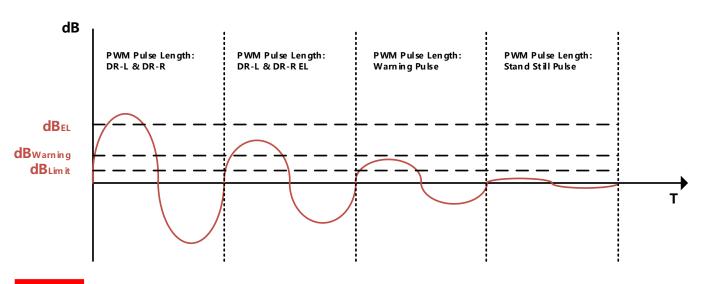
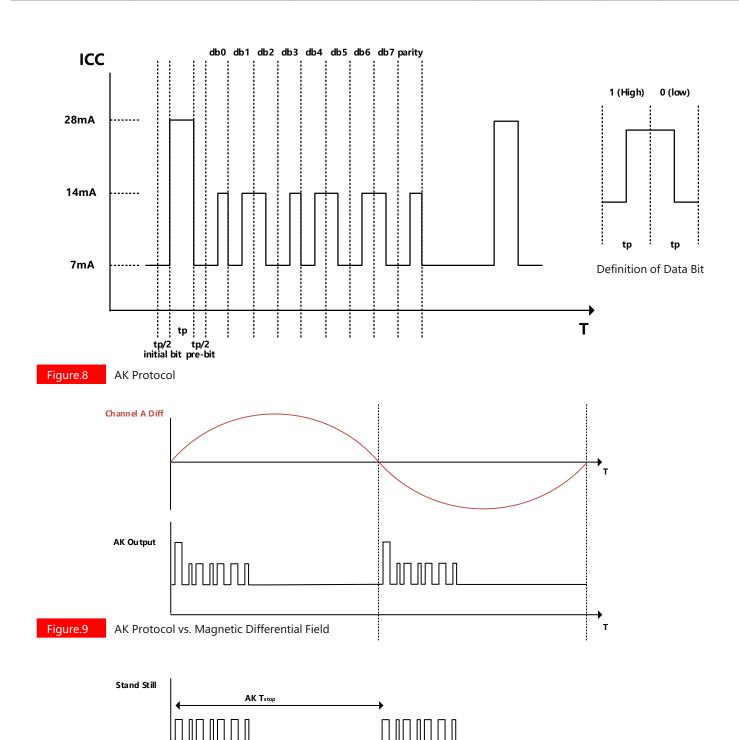


Figure.7 Description of PWM Protocol with Magnetic Differential Field

7.8 Typical Output Waveform (AK Protocol)

A wheel speed pulse is generated whenever a zero crossing during the rising edge of the sensor signal is detected. The pulse duration is tp. Before and after a speed pulse, there is always an initial or pre-bit send which length is tp/2 at a level of Iccl. After the pre-bit, the data bits 8 to 0 are sent.

Bit (db)	Definition	Name	Remark
0	Error Bit or Airgap Reserve	ERR or LR	1=Error
1	Validity of Signal Amplitude Measurement	SLM	0=LM0 & LM1 & LM2 valid 1=LM0 & LM1 & LM2 invalid
2	Not Assigned		Default=0
3	Direction Validity	GDR	0=Invalid 1=Valid
4	Direction Information	DR	0=Positive Rotation 1=Negative Rotation
5		LM0	
6	Airgap Gauge	LM1	
7		LM2	
Parity	Even Parity	Р	Calculated



7.8 Typical Output Waveform (AK Protocol) (Continued)

Time parameters of AK Protocol

The typical values based on Vcc=12V & TA =25°C

Symbol	Parameters	Condition	Min	Тур	Max	Unit
t _p Pulse Time	Speed Pulse	42.5	50	57.5	us	
	Pulse Time	Data Bits	42.5	50	57.5	us
AK TStop	Stop period	Stand Still Period	130	150	170	ms

Stand Still of AK Protocol

Figure.10

7.9 Undervoltage Behavior

If the Vcc drops below the reset level VReset the sensor reduces its current consumption to IERROR regardless of the magnetic encoder input signal. After Vcc exceeding again the voltage release level VReI the sensor restarts and resumes in normal operation.

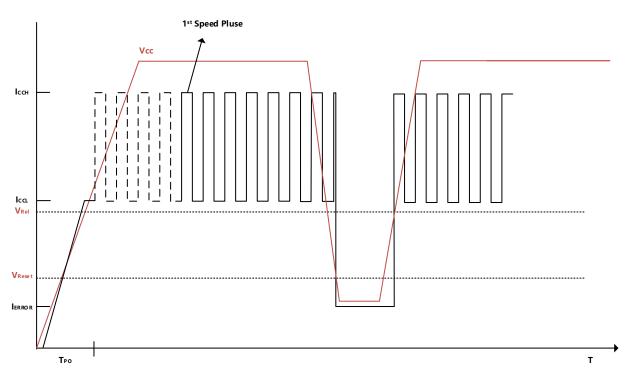
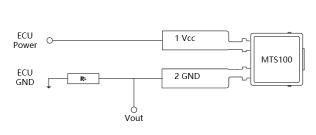



Figure.11 Undervoltage Behavior (Standard Protocol as Example)

If the Vcc lower than 3V (POR point), the chip will re-start

8 Application Circuit

8.1 Typical Application Circuit

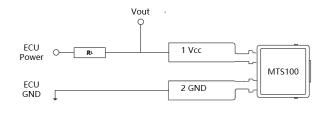
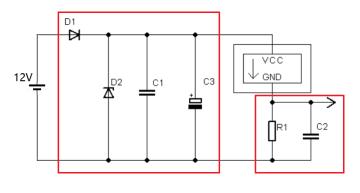



Figure.12 Typical Application Circuit

8.2 EMC Test Circuit

Components:

D1: Reverse polarity protection diode

D2: Zener diode with specific clamping voltage (e.g.27V)

C1: 10nF, 50V

C2: 1nF, 100V

C3: 10uF, 35V

R1: 75Ω

Figure.13 EMC Test Circuit

9 Package Material Information (For Reference Only – Not for Tooling Use)

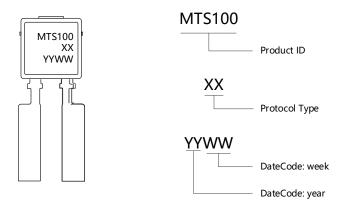


Figure.14 IMA-2L Chip Marking Spec

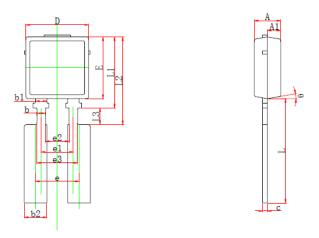


Figure.15 IMA-2L Package Drawing

Symbol	Dimensions i	n Millimeters	Dimension	s in Inches
	Min	Max	Min	Max
А	1.350	1.450	0.053	0.057
A1	0.660	0.760	0.026	0.030
С	0.204	0.304	0.008	0.012
D	3.270	3.370	0.129	0.133
E	3.220	3.320	0.127	0.131
b	0.400	0.500	0.016	0.020
b1	0.550	0.650	0.022	0.026
b2	1.100	1.300	0.043	0.051
е	2.3	2.300		91
e1	1.700		0.0	067
e2	1.150	1.350	0.045	0.053
e3	2.050	2.250	0.081	0.089
L	5.380	5.680	0.212	0.224
L1	3.660	3.860	0.144	0.152
L2	4.500	4.800	0.117	0.189
L3	0.840	0.940	0.033	0.037
θ	9°	11°	9°	11°

10 Copy Rights and Disclaimer

- 1. This document may not be reproduced or duplicated, in any form, in whole or in part without prior written consent of MagnTek . Copyrights © 2022, MagnTek Incorporated.
- 2. MagnTek reserves the right to make changes to the information published in this document at anytime without notice.
- 3. MagnTek' s products are limited for use in normal commercial applications. MagnTek' s products are not to be used in any device or system, including but not limited to medical life support equipment and system.

For the latest version of this document, please visit our website: www.magntek.com.cn